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Abstract—In order to improve the accuracy of the in-plane responses of the shear deformable
laminated composite plate theories, a new high-order laminated plate theory was developed
based upon Reissner’s new mixed variational principle [/nt. J. Num. Meth. Eng. 20, 1366 (1984)].
To this end, a zig-zag shaped C° function and Legendre polynomials were introduced into the
approximate in-plane displacement distributions across the plate thickness. The accuracy of the
present theory was examined by applying it to the cylindrical bending problem of laminated
plates which had been solved exactly by Pagano [J. Comp. Mat. 3, 398 (1969)]. A comparison
with the exact solutions obtained for several symmetric and asymmetric cross-ply laminates

indicates that the present theory accurately estimates in-plane responses, even for small span-to-
thickness ratios

1. INTRODUCTION

The increasing use of composite materials as thick laminates, in aerospace engineering and
in automotive engineering, has clearly demonstrated the need for the development of new
theories to efficiently and accurately predict the behavior of such structural components.
The intrinsic heterogeneity and anisotropy of these composite structures as evidenced in
the stacking of several fibrous layers and in the high discontinuity in material properties
across the interfaces, make the classical theories of plates and shells inadequate.

The inspiration and guidelines for the subsequent attempts have stemmed from
Pagano’s works[1-3] where the exact elasticity solutions for the problems of cylindrical
bending and simply supported rectangular plates were given. Pagano showed the importance
of incorporating the cffect of transverse shear deformations in order to accurately estimate
the plate lateral deflection and the need to improve upon the thickness variation of the in-
plane displacements, which are assumed to be C' linear functions in both classical plate
theory (CPT) and Reissner—Mindlin plate theory (FSD).

The first attempt to develop a general linear laminated plate theory is credited to Yang,
Norris and Stavsky[4]. Their thcory is an cxtension of the Reissner-Mindlin homogeneous
plate theory as applicd to an arbitrary numbcer of bonded anisotropic layers. Whitney and
Pagano[5] extended Yang, Norris and Stavsky’s work. An important conclusion drawn
from their analysis, which was also emphasized later by Whitney{6}, is that the inaccuracies
of the classical plate theory at low span-to-thickness ratios for determining in-plane stresses
are not alleviated by the introduction of shear deformations. Whitney[6] obtained in-plane
displacements by integrating the transverse shear strains deduced in [5]. This resulted in a
higher order approximation which accurately predicted in-plane strains, but the resulting
modified stresses did not necessarily satisfy the original plate equilibrium equations.

Since then, other high-order laminated plate theories have been proposed that account
for transverse shear strains. Of these, the Lo, Christensen and Wu[7] and the Reddy][8]
high-order models have served as the foundation for the present theory. In their paper{7],
Lo, Christensen and Wu used appropriate higher order terms in the power series expansions
of the assumed displacement field which was proposed by Hildebrand, Reissner and
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Thomas[9]. On the other hand, Reddy[8] imposed the condition of vanishing transverse
shear strains on the top and bottom surfaces of the plate. However, this theory does not
satisfy the continuity condition of transverse shear stresses at the interfaces.

The objective of the present paper is to improve the approximation of in-plane variables
in laminated plate theories. In-plane displacements and bending and stretching stresses are
considered primary quantities in any approximate laminated plate analysis; transverse
stresses are only of secondary importance since they are an order of magnitude smaller
than the primary bending and stretching stresses. By using a new mixed variational principle
proposed by Reissner[10], the present theory is a high-order model which improves upon
existing theorics by including in the assumed in-planc displacement variations across the
plate thickness: (1) a zig-zag shaped C° function as detailed by Murakami[12]; and (2)
Legendre polynomials. The advantage of using Reissner’s new mixed variational principle
is that it automatically yields the appropriate shear correction factors for the transverse
shear constitutive equations. Another attractive feature of the proposed theory is that the
number of cquations to be solved is not increased as the number of layers becomes larger
and larger. A comparison of the proposed theory with Pagano’s exact elasticity solution
for symmetric and asymmetric laminated plates in cylindrical bending, shows that in-plane
displacements and stresses are accurately predicted by the inclusion of the zig-zag shaped
function and the Legendre polynomials.

2. FORMULATION

Consider an N-layer laminated composite plate, shown in Fig. I, with principal axes
coinciding with a Cartesian coordinate system (x), x,, x3), such that the x;-axis is per-
pendicular to the plane defined by x, and x,. The following notation: ( }, k =1,2,...,N
will designate quantities associated with the kth layer. The thickness of each layer is %4,
where 4 is the total thickness of the plate. The volume fractions n® satisfy the relation

N
Y %=1, (1)
k=1

Unless otherwise specified, the usual Cartesian indicial notation is employed where Latin
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Fig. 1. Plate geometry, coordinate system and trial in-plane displacements.
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and Greek indices range from 1 to 3 and 1 to 2, respectively. Repeated indices imply the
summation convention and ( ), is used to denote partial differentiation with respect to x;.

With the help of the foregoing notation, the governing equations for the displacement
vector u{¥) and stress tensor i) associated with the kth layer are:

(a) Equilibrium equations
o+ 11 =0 o = @
where f; are the body forces.

(b) Constitutive equations for orthotropic layers

0 “ C~1| .C~12 0w € ® C13/Css “
on| =|Cn Cu ~0 e | +|Cus/Css| 0@ (3a)
01, 0 0 Cq 2e); ] 0
ey3 |© Ci3/Cs3 Cu/Cas 019 e 1@ [1/Cy; 0 0 1%[a5]*®
2923 = — 0 0 0 €22 + 0 1/C44 0 Oy
2e5, 0 0 0| |2e..] | O 0  1/Css| loa
(3b)

where C;; are the elastic constants and C;; (i, j = 1,2, 6) represent the reduced stiffnesses
introduced by Whitney and Pagano|[5].

(c) Strain—displacement relations
el = Jufi) +uf). “
(d) Interface continuity conditions

uP =y eP =06%*V; k=1,2,...,N—1. (5)

(e) Upper and lower surface stress conditions

h

oW =T on x;= 3 (6a)
h

o' =T; on xy3=-— 3 (6b)

The objective in developing a new laminated plate theory is twofold : first, to improve
the assumed variation of in-plane displacements through the thickness of the plate and
second, to include the effect of transverse shear deformation. In order to carry out this task,
Reissner’s new mixed variational principle[10] was applied to the N-layer composite plate
whose middle surface occupies a domain D in the x,, x,-plane:

” [ZJ {6e0® + [u®) +uf) — 2eR(- - ) 7%
D Lk Ja®

[ — e 9] 528 dxs] dx, dx,

= JJ [ZJ Sul £ dx;] dx, dx;+J‘ [Z 5u§"’7v',-"" dx3] ds
o Lk Ja® o0, LE Jaw
h
+ jf l:augl)(xl’xhg)]? _5u:(‘m<xl,x2, - E)Tl_il dx, dx, N
b

SAS 23:)-H



[14 A. ToLepaNo and H. Murakami

where 6Dy denotes the boundary of D with outward normal v, on which tractions T, are
specificd and A% represents the xi-domain occupied by the kth layer. Also 14 denote the
approximate transverse stresses and e’ (---) implies the appropriate right-hand side of
(3b). The significance of eqn (7) lies in the fact that it is a mixed variational principle for
displacements and transverse stresses only. This means that eqns (2a) and (3b) are oblained
as the Euler-Lagrange equations of (7). while eqn (3a) are considered to be the definitions
of oc‘,‘,}’ and dep is determined by taking the variation of eqn (4). This is the reason why the
constitutive equations of three-dimensional elasticity are written in the form (3a, b), as was
shown by Reissner[10, 11]. It now becomes clear that, for laminated plate problems, it
allows to make approximative assumptions regarding transverse stresses which are con-
tinuous across the plate thickness and an order of magnitude smaller than the primary
bending and stretching stresses. ’

3. TRIAL DISPLACEMENT FIELD, TRANSVERSE AND NORMAL STRESSES

The high-order laminated plate theory which takes into account the effect of transverse
shear strains, is obtained by including the Legendre polynomials of order n = 1,2, 3 with
respect to the x;-coordinate to a zig-zag in-plane displacement variation of amplitude
S;(x,, x,) across the plate thickness.

The appropriate trial functions used in connection with Reissner’s mixed variational
principle eqn (7) are taken to be:

(a) Trial displacement field
*) h "
U (x),x3,x3) = U(x), x2)+ 2 Wilx1, x2)P (O +S,(x1, x2) (= 1) ’?km-‘cs

hY AY
+ (5) Eilx1, x)P2 () + <§) @i(x), x)P3(0)  (B)

2x . .
where ( 573 and P,({) are the Legendre polynomials of order n. It is also understood
that ¢, = 0. x§ is a local x,-coordinate systcm with its origin at the center x¥) of the kth
layer, i.e.

X = x,—xf). 9

Equation (8) may be regarded as a superposition of a zig-zag function and the cubic
variation as proposed by Lo, Christensen and Wu[7], with the exception that here Legendre
polynomials are used instead of simple powers in x.

(b) Trial transverse and normal stresses

T(g'f,’(x,,xz,xg) = Q((xk)(xl, x,)F, (Z)+ng)(xl,Xz)Fz(Z)'*J:.k)(xl,Xz)Fs(Z)

+[TE D1, x0) + T (1, x)IFa(2) + [T Vx1, x0) = T (01, x2))Fs(2); - (10a)

T(akg(xnxz,xa) = ng)(x,,xz)ﬂ(z)+R‘;k)(xl,xz)F(,(z)+J(3k)(x,,xz)FJ(z)+I‘3k)(x,,x2)F7 z)
H[TED(x, x )+ TP, XDIF(2)+ (TS V(xy, x2) = TE(x1, x2)IFs(z)  (10b)
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where
_ 5 s 15,9 _ =30
F.(z)—m<212 ~5z +l_6>’ F(2) = ) 4z°-2)
r () 103 g2y ) Nogset 102, 3
F(2) = R (20, -6z + 4>, F,(z) = 35z 5Z + ic
3 105 5
Fs(z) = 10z° — 55 Fo(2) = W(%zs— 142° + Zz) (11)
-315 s 3 s , 1S
F,(2) = W(HZZ —40z° + 32), Fg(2) = 1262°-352° + —é-z
xP 1 ]
and 2= g —ESzSE.
Also,
@R, 1) = [, 1xt 1 e, (12
Ak
P = j )xS"”t‘,’? dx;. (12b)
Ltk

In (10) 7%~V and T are the values of 7§ at the top and bottom surfaces of the kth layer,
respectively. From (6)

T =T¢ and T™M=T7. (13)

The functions F(z),i = 1,...,8 are obtained by first noting that eqn (8) yields cubic variations
across the plate thickness of in-plane stresses. From the equilibrium equations (2a) trans-
verse stresses 7 and t{) may, as a result, be represented by polynomials of degree 4 and
5in z, respectively. Their corresponding coefficients are then computed by using eqns (12a, b).
This yields the functions F(z).

4. LAMINATED PLATE EQUATIONS

Substituting (8) and (10) into (7), using Gauss’ theorem and the orthogonality property
of the Legendre polynomials one obtains:

(a) Equilibrium equations:

Nai.a+Ti+-Ti_ +F1N =0 (l4a)
h ., - M
Mai.a—N3i+'2’(Ti +T7)+F" =0 (14b)
Zyoa— K= [Tt —(=D'T7]+F/ =0 (14c)
h2
Luw=3My+ 5 (@7 ~T7) 4 FE =0 (14d)

h? n
P,,',-(SL&, +—4—N,,>+§(TI+T;)+F5=0 (14¢)
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where

Nog, Moy, Z,5, Loy, P, bl X
[r’/f’ r’Mﬂ‘ r;~ ﬁ ﬂ:lz Z LW[ _Pl(C)‘( l)k (/\)/
hY ok
( ) Py(0), ( >P3(C)] [:f”"] dx; (I5a,b)

ol h 2
(NJi’MBisKJI’ZSDL:!i)E Z lv_PI(C),(_l)kT’
k=1 JA® 2 n'“h

2 hY
(=1 xs“,( >P2(C):|73:) dxs. (150

(b) Constitutive equations:

(i) for transverse stresses

gJk n“"h 2
® _ (n""h)z (T"‘ D4 THy = hn""C"‘)[Uh+‘P + S, (— 1 o,
h? 02 3h? w2 ]
+ hnf,")(‘}’g_a+3§,)+ 2 3 w2 _ _ 534 +*'2— 5n ) Z d)a (168)
1 n""zh Th? ~
;Rff) (T"‘ D _ 7k =Edn(k)3qk) [\p,_,+3¢,+s,,¢( 1) ""h

+3nf(§3.+ 5¢a):| (16b)

14 Jgk) n® h 3h3
0 — oy + 1 ¥4 TE) = - o eV, +56) (169

._-71— iQ(k)__ 5'];“ +3R;k) 1 Q(IH-I) 51(k+” 3R(k+l)
COH12%*  3(n®Rr? " 1P| CEI[12 3(n*+ gy’ In*F DR

h *-1 po ) ) x
126[ o Ts +8(5(T zm—:) WT‘ v ’], (16d)
(ii) for normal stresses

(k) (k) 2
Q% — (:({)2)2 n (T(k D4 TP) = 2hn(k)CSk3|:‘P3+53( )y P + 3hnf,k)53:|

2 3
+ %n""[f]+ hn®P 4+ h? <3nf,")2 - %)E+ %— <5n,‘,"’3 n"">$:| (17a)

k)2
Lo 3218 n%%h

i i (k- 1) k)Y _
RS T s T gy (T -T9) =

0 hzn(k)3 C(}kg

302 .
losohzn““[\h(—l)* g, S+ 3Pl + =~ <n<*>2 >¢} (17b)
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1479 n®p 3n’
08 ~ s + T (T4 T9) = = S (4 i) (179)
1o ASIP %% ~11h*

(TS" "-TP) = (17d)

K "3 s
R R gt o S ¢

-1l Q(gk) Q(}k+l) 15 R(lk) R+
12 [E@ + c% 1):] + 2 l:n(")CS'? T AR DCEF 1):|
55 JP JED 70 s 1§+
¥ 3 n®*CH3 * n+D2CGFD K n*3CH T ol D3CE+D
h| n* n® kD plk+ 1)
=13 [C(Jk) TV 4 IO(C('? o |))T(3k C‘,";f 5 T4 1):| (17¢)

where in (16a, b, c) and (17a, b, ¢, d) k ranges from 1 to N while in (16d) and (17e) k ranges
from | to (N—1). Also, no summation on a is implied in (16) and

CP =6,,CH +0.,,CH;  n® =xY/h (18)
01 Ul.l U2.2T
¥ ¥ Y C.. ]
S| =18, S [C”] ) (19)
& & i “
_5_ _¢1.| $2.2 ]

By solving (16) and (17), 0®, R®, J®, I¥ and T® are obtained in terms of U, ¥,, S;, &
and ¢, and their derivatives. As a result, the quantities Ny, My, Ky, Z3;, Ly; of eqn (15¢)
can be determined as functions of these displacement variables. Such expressions will
automatically include the appropriate shear correction factors by virtue of the Reissner
mixed variational principle.

The equilibrium eqns (14) are supplemented with the following suitable boundary
conditions:

specify U, or Naivas (20a)
specify ¥, or Mv,, (20b)
specify S; or ZyiVas (20¢c)
specify ¢; or L,v,, (20d)
specify ¢, or Pgvg. (20e)

The remaining constitutive equations for N, M, Z,; L,; and P, are obtained by
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substituting (3a), (4), (8) and (10b) into (15a) to yield :

_iNﬁ
h=
i
};EM [N.] [Ny] 0 N [N || U
| My]  [M]  [M] [M,]]]| hY
723 = LA VA B VAR )
: symmetric [Ld (L] || #%¢
ﬁf.: [P li#¢
1
Lt ]
e r 0, 1w
yM st
1y - h
+- Y [CW K] 1 (21
k& =53
L;f. h
i
V7 “;1‘3530

where N = [N}, Nqo, Nyol™, U= [Uy.1, Uz, Us g+ Uy, )7 with analogous expressions for
MY,...,P, ¢.[N],...,[P,] are 3x 3 matrices, [C]* is a 15x § matrix and }*,..., "
are | x 4 vectors, which are given in the Appendix.

5. CYLINDRICAL BENDING OF LAMINATED PLATES

In order to test the accuracy of the present theory, cylindrical bending of composite
plates under sinusoidal loading is considered. The plate is simply supported at the ends
x; = G and / and is infinitely long in the x,-direction. The prescribed boundary conditions
on the top and bottom surfaces of the plate are:

Tt =0, T{ =gsin zti:—'— on X5 r::g (22a)
- h
T| = T; =0 on Xy = "‘“"2* (22b)
The boundary conditions for the simply supported ends are, from (20):
Us=¥3=8:=&(=0 at  x, =01 (23a)
N]]=M1|:Z”=L”=P“=0 at x1=0,1. (23b)

Using surface boundary conditions (22), the equilibrium eqns (14) for cylindrical bending
reduce to:

Ny =0 (24a)
Nu‘]'f'q sin @:0 (24b)

M, —Ny=0 (24¢)
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h . TTX,
M —Nyu+ 398 == 0

/
Z,,,—K; =0
Z);,—K;33—¢g sin E?: 0
Ly,—3M; =0

2

h
L|3'|—3M33 +7q Sin?‘z'?=0

2

h
Py —=5L5, "'ZNJI =0.

From the boundary condition N,, = 0 at x, = 0,/, eqn (24a) implies that

N” =0.

119

(24d)

(24¢)

(24f)

(24g)

(24h)

(241)

25

Next, eqns (15a, c) are expressed in terms of the displacement variables U, ..., ¢;. To this
end, the constitutive equations (16) and (17), for the cylindrical bending analysis, can be

rewritten in the following vector form:

1 -
Q- h’;‘[l"'h[/‘il]zl =4

Ri+h[BI\T) = 42

-

71. 5
0 —zh‘ill +§h[A1]I| =43

1 -
P[TQllll = h[C\]T,

LS IR

1
(TQ\Q: + E[TRI]BI -
and
1
0, - plﬁ'h[/‘l]fs =K

2
31— 7’1[31]I3 =K

hBa T e - ﬁh[Bl]TJ = Ka

1 5 - 351
(TQQ: + [TRBs — 3 2 1TQsMs = 52 1 (TRl = HCHIT

(26a)

(26b)

(26¢)

(26d)

(27a)

(27b)

(27¢)

(27d)

(27¢)
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where

- 8 - 32

Ji=— o 1= 1,3 and I, = 5,0 L. (28)
The matrices [4,],...,[C;] and vectors 4,,...,k, are given in the Appendix. The vector

equations (26a, b, ¢) and (27a, b, ¢, d) have N-components, while the vector equations (26d)
and (27¢) have (N —1) components. Matrices {4 ], ..., [C;] depend on the volume fractions
n™® and elastic constants C%, C% and CY{4, while the vectors 4,,...,x, contain the dis-
placement variables U, ..., ¢,.

. . _ ] |
Equations (26) are easily solved by substituting @, ;B, and pE Jyinterms of T from
(26a, b, ¢) into (26d). This yields a new equation involving T, only, which can thus be solved
for T,. Then by back substitution expressions for Q;, R, and — kz J,in terms of 21,4, and

A, are obtained. Proceeding in a similar manner with (27a, b,c,d) Qs R Ri,— X ,[ 3 and p -/

are determined in terms of &, k,, K3 and k,. These expressions are:

7 4
IQ' ) <§ [ﬂ—{AQJ) —(5 [1]~—2{AQJ> [ia] s [ [ARJ]}12 (292)
1; 2 2[4AR\1 [
7t Gm-zug.l) —<§[I]~4[AQ.1) ’

1
581 =BG (41 = 245)+ (7] - [BR,]é: (29b)

Z[IJ-IAQﬂ) _(5{1]_2{,4@3})

= 3 3 Ki [AR3]] ‘
\%L 4 4 [53J+ [[AR,] (Bge = 5x2)
HTL O (GI-2401 ) - (5I0-41403)

—
()
(™}
i}
T

(30a)
] 75 50 64 80
| (-ﬁ 1+ 5 BR, 1) —(1—1— N+ 5-3—[81«31) [EZ]
1| /64 80 64 128 Ka
PALS Tm + gj{Bks]) (H U+ —= 3 [BRsl)
1 | 10[BQ;]
31 [lG[BQ;]] (2xs~x,) (30b)
where [/] is the N x N identity matrix and
[4Q] [AR,J] _ [[Al]] P, P

with

[TV\]= @TQ:][4)+[TR][B]+[C]) (31b)
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[TV3] = (4[TQ;]{4:] -

(404, ..

[TR3] [B.]+[C:D™"

(3l¢)

.,[BR] are N x N matrices, while [TV] are (N—1) x (N—1) matrices. By inserting

(29) and (30) into (15¢) and (21) the appropriate constitutive relations for the cylindrical

bending problem in terms of the displacement variables U,,..

with respect to x, are obtained.

The form of the dependence on the displacement variables U, . .

., &5 and their derivatives

., &5 of the constitutive

equations thus obtained and the nature of the applied load suggest the following expressions

for the displacements:

(U] [#0)] .
\Pl \i‘,l U3 hU3
& ‘Pg \P;
? = gi;z cos nx—I' and S, [=| 48, |sin nx—l' (32)
1 1
. h
i ¢l_ _¢I/I12_J 63 53/

-
(1021

where the quantities are nondimensional by definition. It is easily proven that the
boundary conditions (23) are satisfied when (32) are substituted therein.

Finally, inserting (32) into the constitutive equations obtained in the manner described
above and these in turn into the equilibrium equations (24) and (25) yields a system of nine
algebralc equations with the nine nondimensional quantities U,,..., &, as unknowns. This
system is conveniently written in matrix form as

B = £ (33)
where

U=1[0,9,8£4.0.9:8:4] (34a)

F= [O,q, 0,%q, 0,4, 0,%(], o]r (34b)

and [B] is a 9 x 9 matrix.

6. NUMERICAL RESULTS

In order to assess the accuracy of the present theory the problem of the cylindrical
bending of an infinitely long strip under sinusoidal loading is examined. The exact elasticity
solution has been given by Pagano[1], where a three layer cross-ply laminate was considered,
the 0° layers being at the outer surfaces of the laminate. The elastic properties are:

Cis

for the 0° layers = 25.062657, —— = 0.335570
ET E,
(35a)
Css Css
— =1.07114 —=0.5;
E, 1.071141, E; ;
o 6! 1 C13
and for the 90° layers —— = 1.002506, = (0.271141
E, E;
(35b)
C33 CSS
=38 4 =35 —o.
E, 1.071141, E, 0.2

where Er is a reference modulus.
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We follow Pagano’s[1] nondimensionalization and write the displacements and stresses

in the form
E N\ 10, x3) E,\ 100/° ,<1 >
sy _ [ By ey =) — 7 LN
“ <q> PR (q> g0

(36)
1 [
6} = (‘10'(1’? (5,)‘3)-
Also
x )
x-_,=-hi, S=1. (37)

In the various curves the solid line represents the exact solution while the results of the
present theory are shown by a broken line. Also shown, for comparison purposes, are the
resuits given by the first-order zig-zag model[12] and Lo, Christensen and Wu’s high-order
theory (LCW)[7], which are represented by a dashed-dotted line and dotted solid line,
respectively. Symmetric 3-, 5- and 9-ply laminates and asymmetric 4- and 8-ply laminates
were examined, to test the present theory.

For a symmetric 3-ply laminate (0/90/0) with layers of equal thickness, Table | shows-
the values of the central deflection i, obtained from the different theories for a span-to-
thickness ratio S of 4 and 6. As observed the present high-order theory correctly predicts
the central deflection i, to the first two decimal digits, while the first-order zig-zag model
gives a better result than LCW. The variation of the in-plane displacement i, across the
platc thickness is compared in Fig. 2a for S = 4, where it is seen that the curves for the
present theory and the exact solution are almost identical. This improvement is also reflected
in the variation of the in-plane stress ¢, across the plate thickness, as shown in Fig. 2b.
Very close agreement is found between Pagano’s exact solution and the present theory,
which has improved upon Lo, Christensen and Wu’s high-order theory, especially at and
in the neighborhood of the interfaces.

The present theory was next tested for a symmetric 5-ply laminate (0/90/0/90/0) with
layers of cqual thickness. The central deflection #, for a span-to-thickness ratio S of 4 and 6,
is shown in Table | where close agreement with the exact solution is observed. The variations
across the plate thickness of in-plane variables @ and {9 are compared in Figs 3 and 4.
The curves for the present high-order theory and the exact solution are again almost
identical. In particular, it is seen that the present theory has considerably improved upon
Lo, Christensen and Wu’s model in the interior layers of the plate.

To further assess the accuracy of the present high-order theory the more difficult
case of a symmetric 9-layer cross-ply laminate (0/90/0/90/0/90/0/90/0) was considered. The
0° layers have equal thickness //10 while the 90° layers have equal thickness A/8. The results
for the central deflection i, are given in Table 1 for S = 4 and 6 where again close agreement
with the exact solution is observed. The variations across the plate thickness of the in-plane
displacement #, and normal stress 6,, are shown in Figs 5 and 6, for S=4 and 6,

Table 1. Central deflection i, for symmetric cross-ply laminates in cylindrical bending under
sinusoidal loading

S=4 S=6
Number of layers N 3 5 9 3 5 9
Exact solution[1] 2.887 3.044 3.324 1.635 1.721 1.929
Present theory 2.881 3.032 3.313 1.634 1.716 1.921
First-order zig-zag{12) 2.907 3.018 3.231 1.636 1.702 1.875
LCW(7] 2.687 2.597 2.835 1.514 1.507 1.708
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Fig. 6b. Thickness variation of normal stress &} of a symmetric 9-layer cross-ply laminate for S = 6.

respectively. There the discrepancies between the first-order zig-zag theory and the exact
solution are more pronounced than in the 3- and 5-layer cases, as expected. However, the
results of the present theory are still very good when compared to the exact solution.

Finally, asymmetric 4 and 8 cross-ply laminates, with layers of equal thickness, were
examined. The present theory predicts accurately the central deflection ii;. These results are
given in Table 2 for a span-to-thickness ratio S of 4 and 6. The variation across the plate
thickness of the in-plane displacement ¢ and normal stress 6 are shown in Figs 7, 8 and
9 for S§ = 4 and 6. From the curves for a4, it is seen that the first-order zig-zag theory
deviates significantly from the exact solution at the bottom layer of the plate. On the other
hand, the discrepancies between LCW and the exact solution, for both 7 and & are more
pronounced in the interior Jayers of the plate, while the present high-order theory is still in
very good agreement with the exact solution.

7. CONCLUSION

A high-order laminated plate theory, which accurately predicts in-plane responses of
symmetric and asymmetric laminates, was developed with the help of Reissner’s new mixed
variational principle[10]. The improvement was achieved by including a zig-zag shaped C°
function in the in-plane displacement variations across the plate thickness, as proposed by
Murakami[12], while the high-order variation is accounted for by using Legendre poly-
nomials. The accuracy of the theory was examined for the case of cylindrical bending of an
infinitely long strip and compared with the exact elasticity solution given by Pagano[1]. The
results for the central deflection and in-plane displacements and normal stresses for several
symmetric and asymmetric cross-ply laminates indicate that the theory very accurately
predicts these in-plane responses even for small span-to-thickness ratios. In all the cases

Table 2. Central deflection i@, for asymmetric cross-ply laminates in
cylindrical bending under sinusoidal loading

§S=4 S=6
Number of layers N 4 8 4 )
Exact solution[1) 4.181 3.724 2.562 2.224
Present theory 4.105 3.625 2.519 2.181
First-order zig-zag[12] 3.316 3.225 2.107 1.934

LCWI[7] 3.587 3.189 2.242 1.979
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considered, the proposed theory gave better in-plane responses than the Lo, Christensen
and Wu high-order theory, especially in the interior layers of the plate. It was also observed

th
ce

at for symmetric laminates, the first-order zig-zag model{12] predicts more accurately the
ntral deflection than the Lo, Christensen and Wu high-order theory.
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APPENDIX
Matrices [N}, ..., [Py} in eqn (21)
D, D, 0 ¢ C 0
{Nu]= D’; ; 0 E} [N‘P]= C’S Cl’ 0 »
0 0 DY 1] ¢
Cy G 0 Cy C ¢
Nl=|cy ¢ 0 INI=|Cy, C 0
0 0y 0 0 Cy
C, % 0 Cs S ¢
0 o Cy 0 {1 0
c, ¢ 0 Ce C, (]
Ml=1C; ¢ 0| IM]=|C, ¢ 0| (AD
0 0 Ccf 0 0 C
D, A 0 D, D 0
Zl=|D 0 | iZd=|Dy D7 0 |
0 0 Dy 0 6 DY
Dy D 0 F, s 0
iLl={Dy Dy 0| ILl=|Fy F} 0
0 ¢ Dy 0 0 Fy
Fy % 0
[P =|F, T 0
0 0 F

SAS 21:1-1
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where
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The { Y, ( )" and ( )’ quantities can be obtained from (Al, 2, 3, 4) by replacing therein ¢} by %, €% and
¢, respectively, where k ranges from 1 to N.

Matrix [CI* and vectors V¥, ... V" ineqn (21)
Q tky
I ¢
[ = £ where (™ = [C,3/C3y Cy/Cyy O (AS)
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Vectors 4,,...,Kq in egns (26) and (27)
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The kth component of the vectors g,,...,$; appearing in (A8) are given by
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